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Abstract. K-flatness for unbounded complexes of modules over a ring R was introduced by
Spaltenstein [25], as an analogue of the classical notion of flatness for modules. In this paper,
we show that the class K-flat consisting of all K-flat complexes is precovering in the homotopy
category K(R). In fact, a Bousfield localization exists for the embedding K-flat ⊆ K(R) and
the quotient K(R)/K-flat is equivalent to the homotopy category of acyclic complexes of pure
injective modules. When restricting to the homotopy category K(Flat) of flat modules, we
recover the fact that a Bousfield localization exists for the embedding K-flat ∩ K(Flat) ⊆
K(Flat) and the existence of an equivalence between the quotient K(Flat)/(K-flat∩K(Flat))
and the homotopy category of acyclic complexes of flat cotorsion modules. The proofs use
Stovicek’s result [26] on the closure of the left Hom-orthogonal of certain complexes under
filtered colimits.
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0. Introduction

The use of unbounded complexes is often unavoidable, when dealing with mathematical
problems that employ homological techniques. For example, unbounded complexes are indis-
pensable tools in the following subjects:

(1) the study of group actions on homotopy spheres, which is closely related to the analysis of
periodicity phenomena in group cohomology that can be understood in terms of the generalized
Tate (complete) cohomology; cf. [2], [10], [21], [27], [28],

(2) the relative homological theory, which is based on the notion of G-dimension introduced
by Auslander and Bridger [3], and was fruitfully extended by Enochs and Jenda [13] to find
applications in representation theory and algebraic geometry and

(3) the approach to Grothendieck duality by Iyengar and Krause [16], Neeman [24] and
Murfet [22], who showed that a dualizing complex induces a certain equivalence of triangulated
categories of unbounded complexes of sheaves.
When dealing with resolutions of unbounded complexes, the proper analogue of the concepts
of projective and injective modules consists of the notions introduced by Spaltenstein in [25];
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see also [4]. A complex of R-modules P is called K-projective if the complex of abelian groups
HomR(P,C) is acyclic for any acyclic complex of R-modules C. Dually, a complex I is called
K-injective if the complex of abelian groups HomR(C, I) is acyclic for any acyclic complex
C. Finally, a complex of (left) R-modules F is called K-flat if the complex of abelian groups
L ⊗R F is acyclic for any acyclic complex of right R-modules L. The conceptual similarity
between projective, injective and flat modules to their K-version counterparts for complexes
is supported by the following properties of K-flat complexes:

(i) The class of K-flat complexes contains the class of K-projective complexes and is closed
under filtered colimits.

(ii) Any K-flat complex is homotopy equivalent to a filtered colimit of K-projective com-
plexes; this is the analogue of the Lazard-Govorov theorem on flat modules (cf. [15], [20]).

(iii) A complex X is K-flat if and only if the Pontryagin dual complex of right R-modules
DX is K-injective; this is the analogue of Lambek’s flatness criterion [19].
The proof of properties (i) and (iii) is easy, whereas a proof of (ii) can be found in [12]. In this
paper, we present yet another similarity between the flatness of modules and the K-flatness
of complexes. In order to formulate that similarity, the relevant concepts are: cotorsion pairs
in the module category R-Mod on one hand and Bousfield localizing pairs in the homotopy
category K(R) on the other.

The class Flat of flat modules can be used in order to define the class Cotor of cotorsion
modules as its right Ext1-orthogonal; an R-module C is cotorsion if and only if Ext1R(F,C) = 0
for all flat modules F . The pair (Flat,Cotor) has the following properties:

(a) An R-module F is flat if and only if Ext1R(F,C) = 0 for all cotorsion modules C.
(b) The class Flat is closed under kernels of epimorphisms.
(c) For any module M , there are short exact sequences of modules

0 −→ C −→ F
p−→M −→ 0 and 0 −→M −→ C ′ −→ F ′ −→ 0,

where the modules F, F ′ are flat and the modules C,C ′ are cotorsion.
Proving properties (a) and (b) is easy, whereas property (c) follows from the proof of the flat
cover conjecture given in [6]. The linear map p in the first of the two exact sequences in (c)
above induces an epimorphism of abelian groups p∗ : HomR(F0, F ) −→ HomR(F0,M) for any
flat module F0; we say that p is a (special) flat precover of M . The three properties (a), (b)
and (c) entitle the pair (Flat,Cotor) to be a complete and hereditary cotorsion pair in the
module category R-Mod.

The analogue of the orthogonality relation between modules induced by the Ext1-pairing is
the orthogonality relation between complexes induced by the Hom-pairing in the homotopy
categoryK(R). Two complexesX,Y are Hom-orthogonal to each other if HomK(R)(X,Y ) = 0,
i.e. if any cochain map fromX to Y is null-homotopic. The subcategoryK-flat of the homotopy
category K(R), which consists of all K-flat complexes, may be used in order to define its right
Hom-orthogonal class Y; a complex Y is in Y if and only if HomK(R)(X,Y ) = 0 for all K-flat
complexes X. Then, the pair (K-flat,Y) has the following properties:
(α) A complex X is K-flat if and only if HomK(R)(X,Y ) = 0 for all complexes Y ∈ Y.
(β) K-flat is a thick triangulated subcategory of the homotopy category K(R).
(γ) For any complex Z, there is a distinguished triangle in K(R)

X
f−→ Z −→ Y −→ SX,
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where X is K-flat and Y ∈ Y.
Property (β) is immediate from the definition of K-flatness. In this paper, we prove properties
(α), (γ) and show that the right orthogonal Y consists precisely of those acyclic complexes Y ,
which are homotopy equivalent to a complex of pure injective modules, i.e.Y = Kac(PInj). We
note that the morphism f in the distinguished triangle in (γ) above induces an isomorphism
of abelian groups f∗ : HomK(R)(X0, X) −→ HomK(R)(X0, Z) for any K-flat complex X0. In
particular, f is a K-flat precover of Z and hence the subcategoryK-flat ofK(R) is precovering.
In fact, the isomorphism f∗ shows that the object X ∈ K-flat represents the restriction of the
functor HomK(R)( , Z) to the full subcategory K-flat ⊆ K(R). It follows that the inclusion
K-flat ↪→ K(R) admits a right adjoint (which maps Z onto X). The three properties (α), (β)
and (γ) entitle the pair (K-flat,Y) = (K-flat,Kac(PInj)) to be a Bousfield localizing pair in
the homotopy category K(R); cf. [18], [23].

The class PInj of pure injective R-modules is the class of injective objects for the pure exact
structure in the module category R-Mod; cf. [17], [29]. It turns out that PInj ⊆ Cotor and
the latter inclusion enjoys the following (density) property: For any R-module F the kernel
of the functor Ext1R(F, ) contains all pure injective modules if and only if it contains all
cotorsion modules; both assertions are equivalent to the flatness of F . If I is pure injective,
then the kernel of the functor Ext1R( , I) is closed under filtered colimits. Stovicek proved in
[26] that an analogous property holds for complexes of pure injective modules. More precisely,
he proved that for any complex of pure injective modules Y the class of those complexes X for
which HomK(R)(X,SnY ) = 0 for all n ∈ Z is closed under filtered colimits. This is the main
technical tool that we employ to prove the properties of K-flat complexes mentioned above.

In fact, we may use a slight generalization of Stovicek’s result and recover some already
known properties of K-flat complexes of flat modules. Let K(Flat) be the homotopy category
of flat modules and K(Cotor) the homotopy category of cotorsion modules. Then, the classes
K-flat ∩ K(Flat) and Kac(Cotor) are orthogonal to each other, i.e. HomK(R)(X,Y ) = 0 for
any K-flat complex of flat modules X and any acyclic complex of cotorsion modules Y . As a
consequence, it follows that the cosyzygy modules of any acyclic complex of cotorsion modules
are also cotorsion; this result has been proved by Bazzoni et al. in [5]. On the other hand, this
latter result implies, in view of Gillespie’s work [14], the full orthogonality between the classes
K-flat∩K(Flat) and Kac(Cotor). If K(Flat-Cotor) is the homotopy category of flat cotorsion
modules, then the pair (K-flat ∩ K(Flat),Kac(Flat-Cotor)) is a Bousfield localizing pair in
the homotopy category K(Flat). In other words, the following properties (relative versions of
properties (α), (β) and (γ) above) hold:

(α-flat) A complex of flat modulesX is K-flat if and only if HomK(R)(X,Y ) = 0 for all acyclic
complexes of flat cotorsion modules Y , whereas a complex of flat modules Y is homotopy
equivalent to an acyclic complexes of flat cotorsion modules if and only if HomK(R)(X,Y ) = 0
for all K-flat complexes of flat modules X.
(β-flat) Both K-flat∩K(Flat) and Kac(Flat-Cotor) are thick triangulated subcategories of

the homotopy category K(Flat) of flat modules.
(γ-flat) For any complex of flat modules Z, there is a distinguished triangle in K(Flat)

X −→ Z −→ Y −→ SX,

whereX is a K-flat complex of flat modules and Y an acyclic complex of flat cotorsion modules.
It follows that the inclusions PInj ⊆ Cotor ⊇ Flat-Cotor in the category of R-modules induce
inclusions Kac(PInj) ⊆ Kac(Cotor) ⊇ Kac(Flat-Cotor) in the homotopy category K(R), which
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enjoy a weak density property: Complementing property (α-flat) above, it turns out that a
complex of flat modules X is K-flat if and only if HomK(R)(X,Y ) = 0 for all acyclic complexes
of cotorsion modules Y or, equivalently, for all acyclic complexes of pure injective modules Y .

The contents of the paper are as follows: In Section 1, we give basic definitions and record
preliminary results that are used in the sequel. In the following Section, we present a detailed
proof of Stovicek’s orthogonality criterion. Then, in Sections 3 and 4, we apply this criterion
and establish the existence of the two Bousfield localizing pairs mentioned above in the full
homotopy category of the ring and the homotopy category of flat modules, respectively.

Notations and terminology. Throughout this paper, R is a fixed unital associative ring. Unless
otherwise specified, all modules are left R-modules and all complexes are cochain complexes of
left R-modules. IfX = ((X i)i, ∂) is a complex and n ∈ Z is any integer, then the n-th translate
SnX of X is the complex whose module of i-cochains is X i+n for all i and whose differential is
(−1)n∂. For any class X of modules, we denote by C(X) the class of those complexes consisting
of modules from X in each degree. If X,Y and Z are three complexes, then any two cochain
maps f : X −→ Y and g : X −→ Z induce the cochain map (f, g) : X −→ Y ⊕ Z, which
is given by x 7→ (f(x), g(x)), x ∈ X. Analogously, any two cochain maps k : X −→ Z and
l : Y −→ Z induce the cochain map [k, l] : X⊕Y −→ Z, which is given by (x, y) 7→ k(x)+l(y),
(x, y) ∈ X ⊕ Y . Let C be a category, D ⊆ C a full subcategory and consider an object C ∈ C.
Then, a morphism f : D −→ C is a D-precover of C if D ∈ D and any morphism D0 −→ C
factors through f for all D0 ∈ D. If any object of C has a D-precover, we say that D is a
precovering subcategory of C.

1. Preliminaries

In this section, we collect basic notions and record preliminary results that will be used later
on. We briefly discuss purity, the homotopy category of the ring and continuous ascending
filtrations on complexes.

I. Purity. The notion of purity, which is due to Cohn [9], is closely related to flatness and
has been successfully used in several homological algebra problems, including the solution of
the flat cover conjecture [6], The reader is advised to consult [29] and the monograph [17] for
a detailed account on this notion. A short exact sequence of modules

0 −→M ′ ι−→M
p−→M ′′ −→ 0

is called pure if it remains exact upon tensoring with any right module N ; in that case, we also
say that ι (resp. p) is a pure monomorphism (resp. a pure epimorphism). Equivalently, the
short exact sequence above is pure if it remains exact after applying the functor HomR(L, )
for any finitely presented module L. An acyclic complex X with cosyzygy modules (Zn)n is
called pure acyclic if the associated short exact sequences of modules

0 −→ Zn −→ Xn −→ Zn+1 −→ 0

are pure exact for all n.
A module P is called pure projective if the functor HomR(P, ) preserves the exactness

of any pure exact sequence. In other words, P is pure projective if any pure epimorphism
p as above induces an epimorphism of abelian groups p∗ : HomR(P,M) −→ HomR(P,M

′′).
All finitely presented modules are pure projective. In fact, any pure projective module is a
direct summand of a suitable direct sum of finitely presented modules. Dually, a module I
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is called pure injective if the functor HomR( , I) preserves the exactness of any pure exact
sequence. In other words, I is pure injective if any pure monomorphism ι as above induces an
epimorphism of abelian groups ι∗ : HomR(M, I) −→ HomR(M

′, I). We may obtain examples
of pure injective modules, by using the Pontryagin duality functor D from the category of left
(resp. right) modules to the category of right (resp. left) modules, which is defined by letting
DM = HomZ(M,Q/Z). It turns out that for any right module M the (left) module DM is
pure injective. In fact, any pure injective module is a direct summand of DM for a suitable
right module M .

II. Complexes. The homotopy categoryK(R) of R has objects all complexes of modules and
morphisms the homotopy equivalence classes of cochain maps between them. For any class of
modules X, we denote by K(X) the full subcategory of K(R) consisting of all complexes which
are homotopy equivalent to a complex in C(X). The particular examples of classes X that we
are interested in are: the class Flat of flat modules, the class Cotor of cotorsion modules, the
class Flat-Cotor of flat cotorsion modules, the class PProj of pure projective modules and the
class PInj of pure injective modules.

If X,Y are two complexes, then the triviality of the group HomK(R)(X,Y ) is equivalent to
the assertion that any cochain map X −→ Y is null-homotopic. In that case, we say that X
is left orthogonal to Y and Y is right orthogonal to X in the homotopy category K(R). Let
A be a class of cochain complexes. Then, the left Hom-orthogonal of A in K(R) is the class
⊥A consisting of all complexes X, which are left orthogonal to all complexes in A. The right
Hom-orthogonal of A in K(R) is the class A⊥ consisting of all complexes Y , which are right
orthogonal to all complexes in A. We say that a pair of classes (A,B) of cochain complexes
forms an orthogonal pair in K(R) if A = ⊥B and A⊥ = B. A triangulated subcategory
A ⊆ K(R) is called thick if it has the following property: whenever X,Y are two complexes
such that X⊕Y ∈ A, then X,Y ∈ A. Any triangulated subcategory with countable products
or coproducts is thick. A pair of thick subcategories (A,B) of K(R) is a Bousfield localizing
pair in K(R) if A ⊆ ⊥B (or, equivalently, B ⊆ A⊥) and for any complex Z there exists a
distinguished triangle in K(R)

A −→ Z −→ B −→ SA,

where A ∈ A and B ∈ B. In that case, (A,B) is actually an orthogonal pair in K(R) and the
inclusion functor A ↪→ K(R) (resp. B ↪→ K(R)) admits a right (resp. left) adjoint; cf. [23,
Chapter 9], [18, §4.9]. As an example, we note that Stovicek proved in [26, Corollary 5.8] that

(K(PProj,Kpac(R)) and (Kpac(R),K(PInj))

are two Bousfield localizing pairs in the homotopy category K(R). Here, Kpac(R) denotes the
triangulated subcategory of K(R) consisting of the pure acyclic complexes.

If X = ((Xn)n, ∂X) and Y = ((Y n)n, ∂Y ) are two complexes, the Hom-complex HomR(X,Y )
is a complex of abelian groups, which is given in degree n by the group

∏
i HomR(X

i, Y i+n) of
all homogeneous maps X −→ Y of degree n. The differential of any n-cochain f is the graded
commutator [∂, f ] = ∂Y f−(−1)nf∂X . The 0-cocycles are precisely the cochain mapsX −→ Y ,
whereas the 0-coboundaries are those cochain maps which are null-homotopic; it follows that
H0HomR(X,Y ) = HomK(R)(X,Y ). For any n ∈ Z the cohomology HnHomR(X,Y ) is equal
to the group HomK(R)(X,SnY ), where SnY is the n-th translate of Y .

Spaltenstein defined in [25] a complex P to be K-projective if the Hom-complex HomR(P,C)
is acyclic for any acyclic complex C, i.e. if P is contained in the left orthogonal ⊥Kac(R) of
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the class Kac(R) of acyclic complexes. Any complex X admits a quasi-isomorphism P −→ X
from a K-projective complex of projective modules P . Dually, one defines a complex I to be
K-injective if the Hom-complex HomR(C, I) is acyclic for any acyclic complex C, i.e. if I is
contained in the right orthogonal Kac(R)⊥ of the class of acyclic complexes. Any complex X
admits a quasi-isomorphism X −→ I to a K-injective complex of injective modules I. As a
consequence, the pairs

(K-proj,Kac(R)) and (Kac(R),K-inj)

are Bousfield localizing pairs in K(R). Here, we denote by K-proj and K-inj the triangulated
subcategories of K(R) that consist of the K-projective and K-injective complexes respectively.

A complex F is called K-flat if the complex of abelian groups L ⊗R F is acyclic for any
acyclic complex of right modules L. All K-projective complexes are K-flat. Let L be an acyclic
complex of right modules. The Hom-tensor duality isomorphism of complexes D(L⊗R F ) '
HomR(L,DF ) shows that L⊗R F is acyclic if and only if HomR(L,DF ) is acyclic. It follows
that F is K-flat if and only if the Pontryagin dual complex of right modules DF is K-injective.
The acyclic K-flat complexes are precisely the pure acyclic complexes [11, Proposition 1.1],
whereas the K-flat complexes of flat modules are the semi-flat complexes studied in [8]. We
denote by K-flat the triangulated subcategory of K(R) consisting of the K-flat complexes.

III. Ascending filtrations. Let X be a complex. An ascending chain of subcomplexes of
X is a family of subcomplexes (Xα)α<γ of X, which is indexed by an ordinal number γ, such
that Xα ⊆ Xβ whenever α, β are two ordinals with α < β < γ. We say that the filtration is
continuous if Xα =

⋃
α′<α Xα′ whenever α < γ is a limit ordinal.

The proof of the following result uses a variation of the argument that is usually employed
in order to prove Eklof’s lemma.

Proposition 1.1. Let X,Y be two complexes and consider an ordinal number γ. We assume
that X is endowed with a continuous ascending chain of subcomplexes (Xα)α<γ, such that the
following conditions are satisfied:
(i) X0 = 0 and X =

⋃
α<γ Xα,

(ii) HomK(R)(Xα+1/Xα, S
nY ) = 0 for all ordinals α with α + 1 < γ and all n ∈ Z and

(iii) the embedding Xm
α ↪→ Xm

α+1 of submodules of Xm induces an epimorphism of abelian
groups HomR(X

m
α+1, Y

n) −→ HomR(X
m
α , Y n) for all α with α + 1 < γ and all n,m ∈ Z.

Then, HomK(R)(X,SnY ) = 0 for all n ∈ Z.
Proof. We have to prove that the Hom-complex HomR(X,Y ) is acyclic, i.e. that its n-th

cohomology group is trivial for all n ∈ Z. Since the hypotheses and the statement to be proved
are both invariant under replacing Y by any of its translates, it only suffices to consider the
case where n = 0. In other words, we have to prove that any cochain map f : X −→ Y is
null-homotopic. We fix such a cochain map f and let fα = f|Xα : Xα −→ Y be its restriction
to the subcomplex Xα ⊆ X for all α < γ. We shall construct by induction a family of linear
maps Σα : Xα −→ Y , α < γ, such that the following conditions are satisfied:
(a) The linear map Σα : Xα −→ Y is a homotopy from fα to the zero map, i.e. it is homoge-
neous of degree −1 and ∂YΣα + Σα∂α = fα : Xα −→ Y for any α < γ. (Here, we denote by
∂α the differential of Xα.)
(b) For any two ordinals α, β with α < β < γ, we have Σβ|Xα = Σα : Xα −→ Y .
Since X0 = 0, we can only let Σ0 = 0. We now assume that α < γ is an ordinal and we have
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already constructed the partial homotopies Σα′ for all ordinals α′ < α, so that properties (a)
and (b) above hold for these.

Assume that α is a limit ordinal, so that Xα =
⋃

α′<α Xα′ . Then, property (b) for the partial
homotopies that are already defined shows that there exists a linear map Σα : Xα −→ Y of
degree −1, which extends Σα′ for all α′ < α. Since the differential ∂α of Xα restricts to the
differential ∂α′ of Xα′ for all α′ < α, property (a) for the partial homotopies Σα′ , α′ < α,
implies that ∂YΣα + Σα∂α = fα : Xα −→ Y , i.e. Σα is a homotopy from fα to the zero map.
We now assume that α = β+1 is a successor ordinal and consider the short exact sequence

of complexes

0 −→ Xβ
ι−→ Xβ+1

π−→ Xβ+1/Xβ −→ 0,

where ι (resp. π) denotes the inclusion (resp. the quotient map). Then, property (iii) implies
that there is an induced short exact sequence of Hom-complexes

0 −→ HomR(Xβ+1/Xβ, Y )
π∗
−→ HomR(Xβ+1, Y )

ι∗−→ HomR(Xβ, Y ) −→ 0.

The homotopy Σβ from the restriction fβ to the zero map is a certain homogeneous linear map
Xβ −→ Y of degree −1. Since the map ι∗ is onto, it follows that there exists a homogeneous
linear map Φ : Xβ+1 −→ Y of degree −1, such that Φι = Σβ (i.e. such that Φ|Xβ

= Σβ).
Then, the cochain map g = fβ+1 − (∂YΦ + Φ∂β+1) : Xβ+1 −→ Y vanishes on Xβ, since fβ =
∂YΣβ+Σβ∂β, and hence defines by passage to the quotient a cochain map h : Xβ+1/Xβ −→ Y ,
so that g = hπ. In view of property (ii), we know that the cochain map h is null-homotopic;
thus, there exists a homogeneous linear map T : Xβ+1/Xβ −→ Y of degree −1, such that

h = ∂Y T + T∂ (where ∂ denotes the differential of the quotient complex Xβ+1/Xβ). We now
consider the homogeneous linear map Σβ+1 = Φ+Tπ : Xβ+1 −→ Y of degree −1 and compute

∂YΣβ+1 + Σβ+1∂β+1 = ∂Y (Φ + Tπ) + (Φ + Tπ)∂β+1

= ∂YΦ + Φ∂β+1 + ∂Y Tπ + Tπ∂β+1

= ∂YΦ + Φ∂β+1 + ∂Y Tπ + T∂π
= ∂YΦ + Φ∂β+1 + (∂Y T + T∂)π
= ∂YΦ + Φ∂β+1 + hπ
= ∂YΦ + Φ∂β+1 + g
= fβ+1.

Therefore, Σβ+1 is a homotopy from fβ+1 to the zero map. Since the restriction of Σβ+1 to
the subcomplex Xβ ⊆ Xβ+1 is the map Σβ+1ι = (Φ+Tπ)ι = Φι+Tπι = Φι+T0 = Φι = Σβ,
the inductive step of the construction is complete.

Since X =
⋃

α<γ Xα, property (b) for the partial homotopies Σα that we have constructed
shows that there exists a linear map Σ : X −→ Y of degree −1, which extends Σα for all α < γ.
Since the differential ∂X of X restricts to the differential ∂α of Xα for all α < γ, property (a)
for the partial homotopies Σα, α < γ, implies that we also have ∂YΣ + Σ∂X = f : X −→ Y .
We have therefore constructed a homotopy from f to the zero map, as needed. �

2. Stovicek’s orthogonality criterion

In this section, we prove in detail a result which is essentially due to Stovicek [26], concerning
the orthogonality in the homotopy category K(R). The particular form of Stovicek’s criterion
that is presented here is strongly reminiscent of a result by Bazzoni et al. [5].
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We consider a filtered direct system of complexes (Xi)i∈I with structure maps fij : Xi −→
Xj for all i ≤ j and the colimit X = colimi Xi. We also consider a complex Y = ((Y n)n, ∂Y )
and a class X of modules, such that the following conditions are satisfied:
(a) HomK(R)(Xi, S

nY ) = 0 for all i ∈ I and all n ∈ Z,
(b) Xi ∈ C(X) for all i ∈ I, i.e. all of the Xi’s are complexes of modules in X,
(c) X is closed under direct sums and filtered colimits and
(d) any pure monomorphism of modules ι : M −→ M ′ with M,M ′ ∈ X induces an epimor-
phism of abelian groups ι∗ : HomR(M

′, Y n) −→ HomR(M,Y n) for all n ∈ Z.
Then, Stovicek’s result can be stated as follows.

Theorem 2.1. With notation and hypotheses as above, we also have HomK(R)(X,SnY ) = 0
for all n ∈ Z.

We note that there is a short exact sequence of complexes

(1) 0 −→ K −→
⊕

iXi
p−→ X −→ 0,

which is pure exact in each degree. Here, p is the cochain map induced by the canonical maps
Xi −→ X, i ∈ I. The proof of Theorem 2.1 will occupy the remaining of the section and is
based on Stovicek’s arguments. For expository purposes, we shall proceed in three steps.

I. Expressing K as a directed union. The subcomplex K ⊆
⊕

i Xi is the image of the
cochain map

h :
⊕

i<jXi −→
⊕

iXi,

whose composition with the natural inclusion νij : Xi ↪→
⊕

i<jXi that corresponds to a pair

of indices (i, j) with i < j, is the composition of (1Xi
,−fij) : Xi −→ Xi ⊕Xj and the natural

inclusion Xi ⊕ Xj ↪→
⊕

i Xi. For any pair of indices (i, j) with i < j, we denote by K(i, j)
the image of the latter composition, i.e. we let

K(i, j) = im
(
Xi

νij−→
⊕

i<jXi
h−→

⊕
iXi

)
.

Then, K =
∑

i<j K(i, j). We note that if i, j, k ∈ I are three indices with i < j < k, then

K(i, j) ⊆ K(i, k) +K(j, k); this is an immediate consequence of the equality fik = fjkfij.
We say that a finite subset c ⊆ I is a cone if c has a maximum element. If c is a cone with

maximum element j and c \ {j} = {i1, . . . , in}, then we write K(c) =
∑n

t=1K(it, j) ⊆ K.

Lemma 2.2. Let C be the set of all cones as above. Then:
(i) The set C is directed with respect to the ordinary inclusion of sets.
(ii) For any pair of indices (i, j) with i < j there exists a cone c ∈ C, such that K(i, j) ⊆ K(c).
(iii) If c, c′ ∈ C are two cones with c ⊆ c′, then K(c) ⊆ K(c′).
(iv) K(c) is a complex of modules in X, i.e. K(c) ∈ C(X) for any cone c ∈ C.
(v) For any cone c ∈ C the embedding K(c) ↪→ K is a split monomorphism of complexes.
(vi) For any cone c ∈ C we have HomK(R)(K(c), SnY ) = 0 for all n ∈ Z.

Proof. (i) This is clear since any finite subset F ⊆ I has an upper bound j ∈ I and F ∪{j}
is then a cone.

(ii) Given a pair of indices (i, j) with i < j, we may let c = {i, j}.
(iii) Let c, c′ be two cones with c ⊆ c′ and consider their maximum elements j, j′ respectively.

Then, we have to show that K(i, j) ⊆ K(c′) for all i ∈ c \ {j}. This is obvious if j = j′ and
hence we may assume that j < j′. But then, for any i ∈ c \ {j} we have i < j < j′ and hence
K(i, j) ⊆ K(i, j′) +K(j, j′) ⊆ K(c′), as needed.
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(iv), (v), (vi) Let c be a cone with maximum element j and c \ {j} = {i1, . . . , in}. We note
that the composition

Xi1 ⊕ . . .⊕Xin
ν−→

⊕
i<jXi

h−→
⊕

iXi ↪→
∏

iXi
π−→

∏n
t=1Xit = Xi1 ⊕ . . .⊕Xin ,

where ν = [νi1j, . . . , νinj] and π is the canonical projection, is the identity. It follows that
K(c) = imhν '

⊕n
t=1Xit and the embedding K(c) ↪→

⊕
i Xi splits. Since Xit ∈ C(X) for

all t = 1, . . . , n and X is closed under direct sums, it follows that K(c) ∈ C(X) as well; this
proves (iv). Moreover, since K(c) ⊆ K ⊆

⊕
i Xi, the embedding K(c) ↪→ K is also split and

this proves (v). On the other hand, the Hom-complex HomR(K(c), Y ) '
⊕n

t=1HomR(Xit , Y )
is acyclic, since all of the HomR(Xit , Y )’s are. It follows that HomK(R)(X(c), SnY ) = 0 for all
n ∈ Z and hence (vi) is also proved. �

Since K =
∑

i<j K(i, j), Lemma 2.2 implies that K is the union of the directed family of sub-

complexes (K(c))c∈C . Moreover, for any c ∈ C the complex K(c) has the following properties:
I-(i) K(c) ∈ C(X),
I-(ii) the embedding K(c) ↪→ K is a pure monomorphism in each degree and
I-(iii) HomK(R)(K(c), SnY ) = 0 for all n ∈ Z.

II. Expressing K as the union of an ascending chain. We shall prove that any com-
plex K, which can be expressed as the union of a directed family of subcomplexes (K(c))c∈C ,
in such a way that properties I-(i), I-(ii) and I-(iii) above hold, is itself contained in the left
orthogonal of the set {SnY : n ∈ Z} in K(R). To that end, we use induction on the cardinality
of the directed set C.

There is nothing to prove if the set C is finite; in that case, C has a maximum element c′

and K = colimcK(c) = K(c′). The result is also clear if C is countable. If C = {c0, c1, c2, . . .},
then there is a short exact sequence of complexes

0 −→
⊕∞

t=0K(ct) −→
⊕∞

t=0K(ct)
p−→ K −→ 0,

which is pure exact in each degree. Here, p is the cochain map induced by the inclusion maps
K(ct) ↪→ K, t ≥ 0. Since K(ct) ∈ C(X) and X is closed under direct sums, it follows that⊕∞

t=0K(ct) ∈ C(X). Then, assumption (d) at the beginning of §2 implies that there is an
induced short exact sequence of Hom-complexes

0 −→ HomR(K,Y )
p∗−→ HomR(

⊕∞
t=0K(ct), Y )−→ HomR(

⊕∞
t=0K(ct), Y )−→ 0.

Since the complexes HomR(K(ct), Y ) are acyclic for all t ≥ 0, it follows that the complex
HomR(

⊕∞
t=0K(ct), Y )=

∏∞
t=0HomR(K(ct), Y ) is also acyclic. Therefore, HomR(K,Y ) must

be an acyclic complex as well and hence HomK(R)(K,SnY ) = 0 for all n ∈ Z, as needed.
We now assume that C is uncountable of cardinality γ and that the result is true for unions

of directed families of subcomplexes over directed sets of cardinality < γ. We choose a function
λ : C ×C −→ C, such that λ(c, c′) ≥ c, c′ for all c, c′ ∈ C. Following Adamek and Rosicky [1,
§1.6], for any subset D ⊆ C we let D = D∪{λ(c, c′) : c, c′ ∈ D} ⊆ C. We note that D is finite
if D is finite; if D is infinite, then cardD = cardD. Given D ⊆ C, we define the increasing
sequence (Dn)n of subsets of C, by letting D0 = D and Dn = Dn−1 for all n ≥ 1. Then, the
union D+ =

⋃
n Dn is a directed subset of C with D+ ⊇ D and cardD+ ≤ max{cardD,ℵ0}.

We may index the elements of C by γ = {α : α < γ} and write C = {cα : α < γ}. We now
construct a continuous ascending chain of directed subsets (Cα)α<γ of C, by letting C0 = ∅,
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Cα+1 = (Cα ∪ {cα})+ if α + 1 < γ is a successor ordinal and Cα =
⋃

α′<α Cα′ if α < γ is a
limit ordinal. Since cα ∈ Cα+1 for any α < γ, it follows that C =

⋃
α<γ Cα. Using induction

on α, we can prove that cardCα ≤ max{cardα,ℵ0} for any α < γ; in particular, we conclude
that cardCα < γ for any α < γ. We can use this continuous ascending chain of directed
subsets of C, in order to define an ascending chain of subcomplexes (Kα)α<γ of K, by letting
Kα = colimc∈Cα K(c) =

⋃
c∈Cα

K(c).

Lemma 2.3. Let the notation be as above. Then:
(i) (Kα)α<γ is a continuous ascending chain of subcomplexes of K,
(ii) K0 = 0 and K = colimα<γ Kα =

⋃
α<γ Kα,

(iii) Kα ∈ C(X) and the embedding Kα ↪→ K is a pure monomorphism in each degree for all
α < γ,
(iv) HomK(R)(Kα, S

nY ) = 0 for all n ∈ Z and α < γ and
(v) HomK(R)(Kα+1/Kα, S

nY ) = 0 for all n ∈ Z and α < γ.
Proof. (i) Let α < γ be a limit ordinal, so that Cα =

⋃
α′<α Cα′ . Then, Kα =

⋃
c∈Cα

K(c) =⋃
α′<α

⋃
c∈Cα′ K(c) =

⋃
α′<α Kα′ .

(ii) Since C0 = ∅, it is clear that K0 = 0. Since C =
⋃

α<γ Cα, we have K =
⋃

c∈C K(c) =⋃
α<γ

⋃
c∈Cα

K(c) =
⋃

α<γ Kα.

(iii) Let α < γ be an ordinal. Then, Kα = colimc∈Cα K(c) is the filtered colimit of complexes
contained in C(X). Since X is closed under filtered colimits, it follows that Kα ∈ C(X) as well.
Moreover, since the embedding K(c) ↪→ K is a pure monomorphism in each degree for all
c ∈ C, it follows that the embedding Kα ↪→ K is also a pure monomorphism in each degree.

(iv) We recall that for any ordinal α < γ we have cardCα < γ. Since Kα =
⋃

c∈Cα
K(c) is

expressed as the union of a directed family of subcomplexes that satisfy properties I-(i), I-(ii)
and I-(iii), we may use the induction hypothesis and conclude that HomK(R)(Kα, S

nY ) = 0
for all n ∈ Z.

(v) Let α < γ be an ordinal. Since the embedding Kα ↪→ K is a pure monomorphism in
each degree, the short exact sequence of complexes

0 −→ Kα −→ Kα+1 −→ Kα+1/Kα −→ 0

is pure exact in each degree. Since Kα, Kα+1 ∈ C(X), assumption (d) at the beginning of §2
implies that there is an induced short exact sequence of Hom-complexes

0 −→ HomR(Kα+1/Kα, Y ) −→ HomR(Kα+1, Y ) −→ HomR(Kα, Y ) −→ 0.

In view of (iv), the complexes HomR(Kα, Y ) and HomR(Kα+1, Y ) are both acyclic. It follows
that the complex HomR(Kα+1/Kα, Y ) is acyclic as well, i.e. HomK(R)(Kα+1/Kα, S

nY ) = 0 for
all n ∈ Z. �

Having proved Lemma 2.3, we note that K is expressed as the union of a continuous ascending
chain of subcomplexes (Kα)α<γ, such that K0 = 0 and for any ordinal α < γ the following
conditions hold:
II-(i) Kα ∈ C(X),
II-(ii) the embedding Kα ↪→ K is a pure monomorphism in each degree and
II-(iii) HomK(R)(Kα+1/Kα, S

nY ) = 0 for all n ∈ Z.

III. Concluding the proof. We may now complete the proof of the induction that started
at the beginning of §2.II above and use Proposition 1.1, in order to show that the complex K
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is indeed contained in the left orthogonal of the set {SnY : n ∈ Z} in the homotopy category
K(R). Since K is the union of a continuous ascending chain of subcomplexes (Kα)α<γ with
K0 = 0, it suffices to show that properties (ii) and (iii) in the statement of Proposition 1.1 are
satisfied. First of all, we note that property (ii) therein is exactly property II-(iii) above. If α is
an ordinal with α < γ, then property II-(ii) above implies that the embeddingKα ↪→ Kα+1 is a
pure monomorphism in each degree. Therefore, property (iii) in the statement of Proposition
1.1 is an immediate consequence of property II-(i) above, in view of assumption (d) that was
made on the pair (X, Y ) at the beginning of §2.

Having proved that K is contained in the left orthogonal of the set {SnY : n ∈ Z}, we can
finish the proof of Theorem 2.1. Since X is closed under filtered colimits, Lemma 2.3(ii),(iii)
implies that K ∈ C(X). Since X is also closed under direct sums and Xi ∈ C(X), it follows
that

⊕
iXi ∈ C(X). In view of our assumption (d) on the pair (X, Y ), the short exact sequence

(1), which is pure in each degree, induces a short exact sequence of Hom-complexes

0 −→ HomR(X,Y )
p∗−→ HomR(

⊕
iXi, Y )−→ HomR(K,Y ) −→ 0.

Since the complexes HomR(Xi, Y ) are acyclic for all i, it follows that HomR(
⊕

i Xi, Y ) =∏
i HomR(Xi, Y ) is also acyclic. As we have proved above that the complex HomR(K,Y ) is

acyclic, we conclude that the complex HomR(X,Y ) must be acyclic as well. In other words,
we have proved that HomK(R)(X,SnY ) = 0 for all n ∈ Z, as needed.

3. A description of K-flat complexes via Hom-orthogonality

In this section, we shall apply Theorem 2.1, in order to show that K-flat complexes are left
orthogonal to acyclic complexes of pure injective modules. In fact, we show that the classes
K-flat and Kac(PInj) constitute an orthogonal pair in the homotopy category K(R) and that
a Bousfield localization exists for the embedding K-flat ↪→ K(R).

Proposition 3.1. If X is a K-flat complex and Y an acyclic complex of pure injective modules,
then any cochain map X −→ Y is null-homotopic, i.e. HomK(R)(X,Y ) = 0.
Proof. In view of [12, Theorem 3.8], the K-flat complex X is homotopy equivalent to a

filtered colimit of K-projective complexes (of pure projective modules). In other words, there
exists a filtered direct system of complexes (Xi)i, such that Xi is K-projective for all i and
X ' colimiXi in the homotopy category K(R). Since Y is acyclic (and the same is true for
all of its translates), we have HomK(R)(Xi, S

nY ) = 0 for all i and all n ∈ Z. We can now apply
Theorem 2.1, by letting X be the class of all modules therein. Then, all of the hypotheses
made at the beginning of §2 are satisfied; (b) and (c) are vacuous and (d) holds since Y is a
complex of pure injective modules. Therefore, we may conclude that HomK(R)(X,SnY ) = 0
for all n ∈ Z; in particular, HomK(R)(X,Y ) = 0, as needed. �

Even though the following result is a formal consequence of the existence of approximation
triangles that will be established in Theorem 3.4 below, it is perhaps instructive to include a
direct proof at this point.

Proposition 3.2. The pair (K-flat,Kac(PInj)) is an orthogonal pair in K(R).
Proof. Since we know that the two classes are orthogonal to each other (cf. Proposition

3.1), it only remains to show that ⊥Kac(PInj) ⊆ K-flat and K-flat⊥ ⊆ Kac(PInj).
We begin by proving the inclusion ⊥Kac(PInj) ⊆ K-flat. To that end, consider a complex

X which is left orthogonal to the class Kac(PInj) of all acyclic complexes of pure injective
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modules. In order to show that X is K-flat, let C be an acyclic complex of right modules.
Then, the Pontryagin dualDC is an acyclic complex consisting of pure injective (left) modules.
In view of our hypothesis on X, the complex D(C ⊗R X) ' HomR(X,DC) is acyclic and
hence the complex C ⊗R X must be acyclic as well (the abelian group Q/Z being an injective
cogenerator of the category of abelian groups). As this is the case for any acyclic complex of
right modules C, we conclude that X is K-flat, as needed.

In order to prove the inclusion K-flat⊥ ⊆ Kac(PInj), we consider a complex Y which is right
orthogonal to the class K-flat of all K-flat complexes. Since the complex R (consisting of R
in degree 0 and zeroes elsewhere) is K-flat, we conclude that the complex HomR(R, Y ) ' Y
is acyclic. As shown by Stovicek in [26, Corollary 5.8], there exists a distinguished triangle in
K(R)

Z −→ Y
f−→W −→ SZ,

where W is a complex of pure injective modules and Z is pure acyclic. Since both Z, Y are
acyclic, it follows that W is acyclic as well, i.e. W ∈ Kac(PInj). As we have already proved
in Proposition 3.1 that Kac(PInj) ⊆ K-flat⊥, we conclude that W ∈ K-flat⊥. But Y is also
contained in K-flat⊥ (in view of our assumption) and hence the distinguished triangle above
shows that Z ∈ K-flat⊥. Being pure acyclic, the complex Z is certainly K-flat. It follows that
Z ∈ K-flat ∩ K-flat⊥ and hence Z ' 0 in the homotopy category K(R), i.e. Z is contractible.
Therefore, the morphism f is represented by a cochain map φ : Y −→W , whose mapping cone
is contractible. It follows that φ is a homotopy equivalence between Y and W ∈ Kac(PInj)
and hence Y ∈ Kac(PInj), as needed. �

Remark 3.3. K-flat complexes were defined by Spaltenstein [25], as those complexes X for
which the tensor product complex functor ⊗R X from the category of complexes of right
modules to the category of complexes of abelian groups preserves acyclicity. The equality
K-flat = ⊥Kac(PInj), which is proved in Proposition 3.2, shows that K-flatness can be defined
solely in terms of the Hom-pairing in the homotopy category K(R) and the concept of pure
injectivity. The embeddingK-proj ⊆ K-flat is induced by the embeddingKac(PInj) ⊆ Kac(R)
by taking left orthogonals in the homotopy category K(R).

Theorem 3.4. The pair (K-flat,Kac(PInj)) is a Bousfield localizing pair in K(R).
Proof. Since the direct sum of any family of K-flat complexes is a K-flat complex, whereas

the direct product of any family of acyclic complexes of pure injective modules is an acyclic
complex of pure injective modules, the triangulated subcategories K-flat and Kac(PInj) of the
homotopy category K(R) are thick. They are orthogonal to each other (cf. Proposition 3.1)
and hence it only remains to show the existence of approximation triangles.

To that end, we fix a chain complex X and consider a quasi-isomorphism P −→ X, where
P is a K-projective complex of projective modules. Its mapping cone Y is acyclic and fits into
a distinguished triangle the homotopy category K(R)

P −→ X
f−→ Y −→ SP.

Using [26, Corollary 5.8], we conclude that there exists another distinguished triangle in K(R)

Z −→ Y
g−→W −→ SZ,

where W is a complex of pure injective modules and Z is pure acyclic. Since both Z, Y are
acyclic, it follows that W is acyclic as well, i.e. W ∈ Kac(PInj). We complete the composition
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gf : X −→W to a distinguished triangle

(2) X
gf−→W −→ V −→ SX

and apply the octahedral axiom to the composable pair of morphisms (f, g)

X
f−→ Y −→ SP −→ SX

↓ 1X ↓ g ↓ 1X

X
gf−→ W −→ V −→ SX

↓ ↓ Sf

SZ
1SZ−→ SZ −→ SY

↓
SY −→ S2P

in order to obtain a distinguished triangle in K(R)

SP −→ V −→ SZ −→ S2P.

We note that the complexes P and Z are both K-flat; indeed, P is K-projective and Z is pure
acyclic. Since K-flat is a triangulated subcategory of the homotopy category, it follows that
V is also K-flat. Then, the distinguished triangle obtained by shifting (2)

S−1V −→ X
gf−→W −→ V

is the approximation triangle we are looking for. �

The following result follows formally from general properties of Bousfield localization (cf. [23,
Chapter 9], [18, Proposition 4.9.1]).

Corollary 3.5. (i) The inclusion functor K-flat ↪→ K(R) admits a right adjoint and the
inclusion functor Kac(PInj) ↪→ K(R) admits a left adjoint.

(ii) Let ιρ : K(R) −→ K-flat be a right adjoint functor to the inclusion K-flat ↪→ K(R).
Then, for any complex X the counit of adjunction morphism ιρX −→ X is a K-flat precover.

(iii) Let K(R)/K-flat be the Verdier quotient of the homotopy category K(R) by the trian-
gulated subcategory K-flat. Then, the quotient functor p : K(R) −→ K(R)/K-flat admits a

right adjoint and the composition Kac(PInj) ↪→ K(R)
p−→ K(R)/K-flat is an equivalence of

categories. In particular, the quotient K(R)/K-flat has small Hom-sets. �
If we identify the Verdier quotient K(R)/K-flat with Kac(PInj), by means of the composi-

tion Kac(PInj) ↪→ K(R)
p−→ K(R)/K-flat, then the right adjoint to the quotient functor p is

identified with the inclusion functor Kac(PInj) ↪→ K(R) and, of course, the left adjoint to the
latter inclusion functor is identified with the quotient functor p.
We may reformulate pictorially some of the assertions made above by the following diagrams

of triangulated subcategories of the homotopy category K(R)

K-flat ←− K-proj Kac(PInj) −→ Kac(R)
↑ ↓

Kpac(R) K(PInj)

Here, all arrows are inclusions and the left (resp. right) hand side diagram is obtained from
the right (resp. left) hand side diagram by taking left (resp. right) Hom-orthogonals. It is clear
that Kac(PInj) = Kac(R) ∩K(PInj) is the biggest triangulated subcategory of the homotopy
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category, which is contained in both Kac(R) and K(PInj). We shall conclude this section, by
proving the dual assertion for K-flat. In fact, the following description of the category K-flat
may be used for an alternative approach to some of the results obtained earlier in this section.

Proposition 3.6. The category K-flat is the smallest triangulated subcategory of the homotopy
category, which contains both Kpac(R) and K-proj.
Proof. Let T ⊆ K(R) be a triangulated subcategory, containing both Kpac(R) and K-proj,

and consider a K-flat complex X. As shown by Stovicek in [26, Corollary 5.8], there exists a
distinguished triangle in K(R)

(3) Y −→ X −→W −→ SY,

where Y is a complex of pure projective modules and W is pure acyclic. Since Kpac(R) ⊆ T,
it follows that W ∈ T. Since pure acyclic complexes are K-flat, we conclude that both
complexes X,W are K-flat; hence, Y is K-flat as well. As shown in [12, Corollary 3.4], any K-
flat complex of pure projective complexes is necessarily K-projective. Therefore, we conclude
that the complex Y is K-projective and hence Y ∈ T. The distinguished triangle (3) then
shows that X ∈ T, as needed. �

4. K-flat complexes of flat modules

In this section, we apply Theorem 2.1 once more, in order to examine the relation between
the K-flat complexes of flat modules and the acyclic complexes of cotorsion modules. It will
turn out that the classes K-flat ∩ K(Flat) and Kac(Cotor) are orthogonal to each other in the
homotopy category K(R). This recovers a result by Bazzoni et al. [5], according to which the
cosyzygy modules of any acyclic complex of cotorsion modules are themselves cotorsion. In
fact, the latter result implies the full orthogonality assertion made above, in view of Gillespie’s
work [14]. Then, as a relative version of Theorem 3.4, it will follow that a Bousfield localization
exists for the embedding K-flat ∩K(Flat) ↪→ K(Flat).

We wish to proceed in a way that parallels the method of §3. In the same way that any K-flat
complex can be expressed (up to homotopy equivalence) as a filtered colimit of K-projective
complexes of pure projective modules, one can also express (up to homotopy equivalence) any
K-flat complex of flat modules as a filtered colimit of K-projective complexes of projective
modules (cf. [8], [12, Remark 3.9]).

Proposition 4.1. If X is a K-flat complex of flat modules and Y an acyclic complex of
cotorsion modules, then any cochain map X −→ Y is null-homotopic, i.e. HomK(R)(X,Y ) = 0.

Proof. As noted above, there exists a filtered direct system of complexes (Xi)i, such that Xi

is a K-projective complex of projective modules for all i and X ' colimi Xi in the homotopy
category K(R). Since Y is acyclic (and the same is, of course, true for all of its translates), we
have HomK(R)(Xi, S

nY ) = 0 for all i and all n ∈ Z. We can now apply Theorem 2.1, by letting
X be the class of flat modules therein. Then, all of the hypotheses made at the beginning of
§2 are satisfied: (b) follows since projective modules are flat and (c) expresses a well-known
property of flatness. Finally, hypothesis (d) holds since any pure monomorphism ι : M −→M ′

of flat modules has a flat cokernel, so that Ext1R(coker ι, Y
n) = 0, in view of the fact that Y n

is a cotorsion module for all n. Therefore, we may conclude that HomK(R)(X,SnY ) = 0 for
all n ∈ Z; in particular, HomK(R)(X,Y ) = 0, as needed. �
The special case of Proposition 4.1, where the complex X therein is a flat module supported
in degree 0, recovers a result by Bazzoni et al. [5], as we shall now explain.



K-FLATNESS AND ORTHOGONALITY IN HOMOTOPY CATEGORIES 15

Lemma 4.2. Let 0 −→M ′ −→M
p−→M ′′ −→ 0 be a short exact sequence of modules.

(i) If M ′ is cotorsion, then the additive map p∗ : HomR(F,M) −→ HomR(F,M
′′), which is

induced by p, is surjective for any flat module F .
(ii) If M is cotorsion and the additive map p∗ : HomR(F,M) −→ HomR(F,M

′′), which is
induced by p, is surjective for any flat module F , then M ′ is cotorsion.

Proof. Both claims follow from the exact sequence

HomR(F,M)
p∗−→ HomR(F,M

′′) −→ Ext1R(F,M
′) −→ Ext1R(F,M),

where F is any (flat) module. �

Corollary 4.3. Let Y be an acyclic complex of cotorsion modules.
(i) The complex HomR(F, Y ) is acyclic for any flat module F .
(ii) (cf. [5, Theorem 4.1(2)]) The cosyzygy modules of Y are cotorsion.

Proof. (i) Let F be a flat module, which is regarded as a cochain complex concentrated in
degree 0; this complex is K-flat. Then, Proposition 4.1 implies that HomK(R)(F, S

nY ) = 0,
i.e. the n-th cohomology group of the cochain complex HomR(F, Y ) is trivial for all n.

(ii) Let Y = ((Y n)n, ∂) and consider its cosyzygy modules Zn, n ∈ Z. Then, for any n ∈ Z
there is a short exact sequence of modules

0 −→ Zn −→ Y n θ−→ Zn+1 −→ 0,

where θ is induced by the differential ∂ : Y n −→ Y n+1. Since the module Y n is cotorsion, in
order to show that Zn is also cotorsion, it suffices to show that the additive map

θ∗ : HomR(F, Y
n) −→ HomR(F,Z

n+1),

which is induced by θ, is surjective for all n and all flat modules F (cf. Lemma 4.2(ii)). Let
us fix a flat module F and an integer n. Then, the linear maps F −→ Zn+1 are precisely the
(n + 1)-cocycles of the complex HomR(F, Y ) and those linear maps F −→ Zn+1 that factor
through θ : Y n −→ Zn+1 are its (n + 1)-coboundaries. Hence, the surjectivity of θ∗ follows
from the fact that the (n+ 1)-th cohomology group of the complex HomR(F, Y ) is trivial; cf.
(i) above. �

Remarks 4.4. (i) Stovicek [26] has proved that any pure acyclic complex X is left orthogonal
to the classK(PInj) of all complexes of pure injective modules. IfX is a pure acyclic complex of
flat modules, then Bazzoni et al. [5] proved thatX is actually left orthogonal to the bigger class
K(Cotor) of all complexes of cotorsion modules. There is a similar picture for K-flat complexes.
Proposition 3.1 asserts that any K-flat complex X is left orthogonal to the class Kac(PInj)
of all acyclic complexes of pure injective modules. If X is a K-flat complex of flat modules,
then Proposition 4.1 asserts that X is actually left orthogonal to the bigger class Kac(Cotor)
of all acyclic complexes of cotorsion modules. The inclusion Kac(PInj) ⊆ Kac(Cotor) induces
a reverse inclusion between the left orthogonals ⊥Kac(PInj) ⊇ ⊥Kac(Cotor), which becomes
an equality

(4) K(Flat) ∩ ⊥Kac(Pinj) = K(Flat) ∩ ⊥Kac(Cotor)

when restricted to complexes of flat modules. Both sides of the latter equality coincide with
the class of K-flat complexes of flat modules, in view of the chain of inclusions

K(Flat)∩⊥Kac(Cotor) ⊆ K(Flat)∩⊥Kac(PInj) = K(Flat)∩K-flat ⊆ K(Flat)∩⊥Kac(Cotor).
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(ii) We have demonstrated above how one can deduce Corollary 4.3(ii), using Proposition
4.1. It should be noted though that results already available in the literature can be used in
order to show that Corollary 4.3(ii) actually implies the (apparently stronger) result in Propo-
sition 4.1. Indeed, Gillespie has introduced in [14] a method for constructing cotorsion pairs
in the category of complexes out of cortorion pairs in the category of modules. Applying his
method to the cotorsion pair (Flat,Cotor) in the module category, and using [14, Proposition
4.11] and Corollary 4.3(ii), one can deduce the claim made in Proposition 4.1. To be more
precise, using Gillespie’s terminology, Corollary 4.3(ii) implies that the class of all acyclic

complexes of cotorsion modules coincides with the class C̃otor of Cotor-complexes, whereas
[14, Proposition 4.11] asserts that the class of K-flat complexes of flat modules coincides with

the class dgF̃lat. As the latter class is defined by Gillespie to be the class of those complexes

of flat modules which are left Hom-orthogonal to all complexes in C̃otor, we conclude that

K(Flat) ∩K-flat = K(Flat) ∩ ⊥Kac(Cotor)

(cf. (i) above). In particular, it follows that K(Flat)∩K-flat ⊆⊥Kac(Cotor), which is precisely
the assertion made in Proposition 4.1. We also note that [14, Corollary 4.18] implies that for
any complex Z there exist short exact (approximation) sequences of complexes

(5) 0 −→ Y −→ X −→ Z −→ 0 and 0 −→ Z −→ Y ′ −→ X ′ −→ 0,

where X,X ′ are K-flat complexes of flat modules and Y, Y ′ are acyclic complexes of cotorsion
modules.

(iii) In [7, Theorem 3.3] the authors proved the analogues of Theorem 4.1 and Corollary
4.3(ii) for complexes of quasi-coherent sheaves on any separated quasi-compact scheme.

Let Z be a complex of flat modules and consider the first of the two approximation sequences
(5) above, namely the short exact sequence

0 −→ Y −→ X −→ Z −→ 0,

where X is a K-flat complex of flat modules and Y is an acyclic complex of cotorsion modules.
Since both X,Z are complexes of flat modules, it follows that Y is also a complex of flat
modules, i.e. Y is an acyclic complex of flat cotorsion modules. Moreover, the short exact
sequence is degree-wise split; hence, X is the mapping cone of a cochain map φ : S−1Z −→ Y
and the short exact sequence represents a distinguished triangle in the homotopy category
K(Flat) of flat modules

X −→ Z
Sf−→ SY −→ SX,

where f is the homotopy class of φ. Let Kac(Flat-Cotor) be the triangulated subcategory of
the homotopy category, consisting of those complexes which are homotopy equivalent to an
acyclic complex of flat cotorsion modules. Since Kac(Flat-Cotor) ⊆ Kac(Cotor) is contained
in the right Hom-orthogonal of the thick subcategory K-flat ∩K(Flat),1 the existence of the
approximation triangle above for any complex of flat modules Z, shows that

(K-flat ∩K(Flat),Kac(Flat-Cotor))

1The triangulated subcategory K-flat ∩K(Flat) is closed under (countable) coproducts in K(R); hence, it
is thick in the full homotopy category K(R).
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is a Bousfield localizing pair in K(Flat). The argument in [23, Remark 9.1.15] shows that the
pair is orthogonal in K(Flat), i.e.

(6) K(Flat) ∩ ⊥Kac(Flat-Cotor)) = K-flat ∩K(Flat)

and

K(Flat) ∩(K-flat ∩K(Flat))⊥ = Kac(Flat-Cotor).

It follows that Kac(Flat-Cotor) is a thick subcategory of the homotopy category K(Flat); if
X,Y ∈ K(Flat) and X ⊕ Y ∈ Kac(Flat-Cotor), then X,Y ∈ Kac(Flat-Cotor). We record the
discussion above in the form of the following result; assertions (i), (ii) and (iii) follow formally
from general principles concerning Bousfield localization (cf. [23, Chapter 9], [18, Proposition
4.9.1]).

Theorem 4.5. The pair (K-flat ∩K(Flat),Kac(Flat-Cotor)) is a Bousfield localizing pair in
the homotopy category K(Flat) of flat modules. Consequently, the following assertions hold:

(i) The inclusion functor K-flat∩K(Flat) ↪→ K(Flat) admits a right adjoint and the inclu-
sion functor Kac(Flat-Cotor) ↪→ K(Flat) admits a left adjoint.
(ii) Let ρ : K(Flat) −→ K-flat∩K(Flat) be a right adjoint functor to the inclusion K-flat∩

K(Flat) ↪→ K(Flat). Then, for any complex of flat modules Z the counit of adjunction
morphism ρZ −→ Z is a K-flat ∩K(Flat) precover.

(iii) Let K(Flat)/(K-flat ∩K(Flat)) be the Verdier quotient of K(Flat) by the triangulated
subcategory K-flat ∩K(Flat). Then, the quotient functor

q : K(Flat) −→ K(Flat)/(K-flat ∩K(Flat))

admits a right adjoint and the composition

Kac(Flat-Cotor) ↪→ K(Flat)
q−→ K(Flat)/(K-flat ∩K(Flat))

is an equivalence of categories. In particular, the quotient K(Flat)/(K-flat ∩ K(Flat)) has
small Hom-sets. �

If we identify the Verdier quotient K(Flat)/(K-flat ∩ K(Flat)) with Kac(Flat-Cotor), by
means of the composition

Kac(Flat-Cotor) ↪→ K(Flat)
q−→ K(Flat)/(K-flat ∩K(Flat)),

then the right adjoint to the quotient functor q is identified with the inclusion functor

Kac(Flat-Cotor) ↪→ K(Flat)

and, of course, the left adjoint to the latter inclusion functor is identified with the quotient
functor q.

Remark 4.6. As we noted in Remark 4.4(i), both sides of equation (4) are equal to the class
K(Flat) ∩ K-flat of K-flat complexes of flat modules. Therefore, equation (6) above shows
that

K(Flat) ∩ ⊥Kac(Flat-Cotor)) = K(Flat) ∩ ⊥Kac(Cotor).

In other words, the inclusion Kac(Flat-Cotor) ⊆ Kac(Cotor) induces a reverse inclusion be-
tween the left orthogonals ⊥Kac(Flat-Cotor) ⊇ ⊥Kac(Cotor), which becomes an equality when
restricted to complexes of flat modules.
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